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We consider the problem of nonlinear thermal-solutal convection in the mushy zone 
accompanying unstable directional solidification of binary systems. Attention is 
focused on possible nonlinear mechanisms of chimney formation leading to the 
occurrence of freckles in solid castings, and in particular the coupling between the 
convection and the resulting porosity of the mush. We make analytical progress by 
considering the case of small growth Piclet number, S, small departures from the 
eutectic point, and infinite Lewis number. Our linear stability results indicate a small 
O(6) shift in the critical Darcy-Rayleigh number, in accord with previous analyses. We 
find that nonlinear two-dimensional rolls may be either sub- or supercritical, 
depending upon a single parameter combining the magnitude of the dependence of 
mush permeability on solids fraction and the variations in solids fraction owing to 
melting or freezing. A critical value of this combined parameter is given for the 
transition from supercritical to subcritical rolls. Three-dimensional hexagons are found 
to be transcritical, with branches corresponding to upflow and lower porosity in either 
the centres or boundaries of the cells. These general results are discussed in relation to 
experimental observations and are found to be in general qualitative agreement with 
them. 

1. Introduction 
The coupling between fluid flow and phase growth is important in many 

technological applications, including the casting of metals and crystallization of pure 
substances. Recent general reviews include Glicksman, Coriell & McFadden (1986) 
and Huppert (1990) among others. Of particular interest here is the case when the 
liquid is a chemical mixture that freezes with a composition different to that of the melt. 
This leads to compositional and temperature gradients that may be unstable, thus 
influencing the nature of the material when it is finally frozen. When an alloy is 
solidified, there is a primary instability marking the breakdown of simple one- 
dimensional growth. It is well known that a second mode of dendritic growth then 
occurs in which there is an appreciable two-phase region, referred to as a ‘mush’, in 
which solid dendrites and liquid coexist. A large number of experimental observations 
over the last 10-15 years have identified another, secondary, instability by which the 
mush becomes spatially non-uniform (see Chen & Chen 1991 ; Copley et al. 1970; Tait, 
Jahrling & Jaupart 1992; Tait & Jaupart 1992; Sample & Hellawell 1984; Sarazin & 
Hellawell 1988; and reference therein). It is this second instability that is of interest 
here. One of the consequences of this secondary instability is the formation of channels 
or chimneys of essentially pure liquid that are typically oriented in the direction of 
gravity. When finally frozen, the fossil record of these chimneys often manifests itself 
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FIGURE 1. A schematic phase diagram. The features of this graph are similar to those of an 
ammonium chloride-water system, which is often used in experiments on chimney formation. The 
state of the fresh liquid at the top of the domain, T* = TJc,), c* = co is indicated by a dot. 

by localized regions of different chemical composition in the sample, known as 
‘freckles’. It has been speculated by many investigators that the origin of freckles is 
related to a buoyancy-driven instability in the mush by the following mechanism : 
during freezing from below, solute is rejected from the solid dendrites and is enriched 
in the interdendritic liquid. If the rejected constituent is lighter, as is frequently the case, 
the cold, solute rich liquid near the bottom is often lighter than the warmer liquid 
above. The liquid is thus unstably stratified and thermal-solutal convection may occur. 
Once convection has started an important coupling between the convection and the 
porosity of the mush becomes possible. The mush will attain a temperature, 
composition and solid fraction that is dictated by a combination of the local 
thermodynamic state and the phase diagram, leading to the possibility of either 
remelting or enhanced freezing of the solid. If the details are such that remelting occurs 
in regions of upflow, the local porosity will increase there, leading to a reduction in the 
viscous resistance to flow, and a positive feedback mechanism for further focusing of 
the upflow. This coupling between flow and temperature via the porosity is a very 
intricate mechanism that is thought to be responsible for the nucleation and growth of 
chimneys. 

Solidification of binary systems are to a large extent governed by the phase diagram, 
i.e. relations between composition c* and temperature T* at the phase boundaries. A 
sketch of a representative phase diagram is shown in figure 1. The liquidus line TL(c*) 
relates the composition of the liquid in the porous mush to the temperature. It has been 
assumed to be linear according to 

T* = TL(c*) = TE+r(c* -cCE) ,  (1.1) 
where r is a constant (see figure 1). This relation is valid in the temperature range 
TE < T* < q. For temperatures above the melting temperature for pure material, q, 
no solid is formed regardless of composition. When the temperature falls below 
the eutectic temperature, TE, all remaining liquid, which is then of composition cE, 
solidifies immediately. Also, the solidus line is assumed to be vertical, i.e. the solids 
inside the mush are composed of pure solute (c, = 1). These assumptions are somewhat 
restrictive, but are representative for the common model system ammonium 
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chloride-water. Our main conclusions will be relatively independent of this last 
assumption. 

There have been only a few analyses that develop quantitative models to describe 
this process and the parameters on which it depends. Fowler (1985) was one of the first 
to pose and solve a linear instability model to couple buoyancy-drive convection with 
the resulting porosity of the mush. However, he made many restrictive assumptions 
that limit the applicability of the results. More recently, Worster (1992) solved a linear 
instability problem including the possible coupling between convection in the mush 
and in the liquid melt above the mush. His work is an important antecedent of ours, 
as he showed that there are two modes of convection associated with the density 
profiles in the mush and the melt, respectively, and that there is seldom any significant 
coupling between the two. Our model, developed below, focuses on the mode 
appropriate to convection in the mush. 

In addition to these analyses of the linear stability problem, there have been recent 
attempts to understand chimney formation by direct numerical simulation of model 
partial differential equations in both two and three dimensions (see e.g. Felicelli, 
Heinrich & Poirier 1991 ; Neilson & Incropera 1993). While instructive, these studies 
often suffer from insufficient numerical resolution when the lateral scale of the chimney 
is commensurate with the grid size, and they do not allow dependence upon parameters 
to be identified. 

We are interested in the problem of nonlinear convection and phase evolution in 
unstable dendritic growth. Linear stability theory predicts smooth periodic variations 
in porosity, with regions of upflow and downflow of the same size, while experiments 
and simulations show localized upflow regions. Tait & Jaupart (1992) and Worster 
(1992) have suggested on intuitive grounds that the bifurcation could be subcritical, 
since a convective flow would experience less flow resistance in a fully developed 
chimney than in an almost uniform mush. 

In order to investigate this mechanism in more detail, we analyse a model problem 
appropriate for a binary system close to the eutectic composition. Weakly nonlinear 
theory is used to obtain information on the character of the bifurcation from the 
stagnant state. Both two-dimensional rolls and three-dimensional hexagonal patterns 
are investigated. This study complements the previous studies of the linear stability by 
providing information about possible hysteresis effects, subcritical instability, and 
illuminates the effect of focusing of a chimney by remelting. It is complementary to full 
numerical simulations of chimney formation by yielding the explicit dependencies of 
stability properties on the parameters of the problem. The main limitations of this 
study are that it is restricted to binary systems that are close to the eutectic composition 
in a non-dimensional sense, and that the free boundary at the top of the mush is not 
included. These are restrictions that may be relaxed in further studies. 

The outline of the paper is as follows: in $2 the non-dimensional form of the 
governing equations is given and our ‘close to eutectic’ approximation is discussed. 
These equations are solved for small but finite disturbance amplitudes, using weakly 
nonlinear theory, in $3. The results and their implications for real chimney formation 
are discussed in $4. 

2. Formulation 
We consider a binary mixture that solidifies owing to cooling from below at 

conditions well beyond the primary instability so that the solid is growing dendritically, 
forming a mushy layer of infinite extent in the (x,y)-plane. Figure 2(a) sketches the 
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FIGURE 2. Two different geometries of the mushy layer. (a) Mush growing upwards into a basin of 
superheated liquid. The mush-liquid interface is a free surface. (b) Mush confined between two 
boundaries. The position of the upper edge of the mush is controlled by feeding liquid through a 
porous block at the liquidus temperature. The latter case is investigated here. 

situation that might pertain in experiments such as those by Tait & Jaupart (1992) and 
Chen & Chen (1991), in which a mush propagates upwards into a deep bath of 
superheated mixture. The mush is then bounded at the top by a free interface. The 
mush/solid mixture freezes at a rate that is time-dependent, and limited by thermal 
diffusion within the mush (Huppert 1990). As explained above, we focus on instability 
modes present within the mush, and therefore adopt a simplified model geometry 
shown in figure 2(b). A mush is held between a solid lower boundary and a top 
interface, which are taken to be isothermal and fixed. The macroscopic solidification 
rate is taken to be constant and therefore in a frame moving with the solidification 
velocity V, liquid of composition c, is transferred through the upper boundary to 
replace the solids that are withdrawn at the bottom. The lower boundary is at the 
eutectic temperature, so that the mixture is completely solid at z c 0. The upper 
boundary is kept at the liquidus temperature of the mixture, and the entire space is 
assumed to be filled with a mush, which we model as a porous medium. While there 
are differences in the two situations, e.g. unconstrained growth is inherently time- 
dependent while our model has a steady base state, these are probably of secondary 
importance to the main objectives of our analysis. 
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The density of the liquid is assumed to vary linearly both with temperature and 
composition : 

P = PO[’ -a(T* - TE) +p(c* - c E ) ]  = PO(1 + [(p/r)-al  (T* - TE))* (2.1) 
r is the slope of the liquidus curve and the liquidus relation ( 1 . 1 )  was used to eliminate 
the composition c* in the last equality, leading to a Boussinesq approximation with 
effective expansion coefficient [@/I“) -a],  which may become positive and lead to 
buoyancy-driven convection when the solutal effect dominates. 

The equations governing the evolution of a porous mush have been given by Hills, 
Loper & Roberts (1983), and have been studied in different contexts by several authors. 
Here we will start with a non-dimensional form very similar to that used by Worster 
(1992) : 

0 = -Vp-K($)u-RaBe,, (2.2a) 

v * u  = 0,  (2.2 b)  

a 1 
aZ/ Le 

--[Cg,+(l -q5)0]+V*(0u) = -v20, (2 .24  

(2.2 d )  

The dependent variables are velocity and pressure, u and p,  temperature 8, and the 
volume fraction solid in the mush, $ (= I -x where x denotes the porosity). Equation 
(2.2a) is the Darcy-Boussinesq equation. With the assumption that the densities of the 
solid and liquid are equal (no solidification shrinkage), mass conservation is described 
by equation (2.2b). Equation ( 2 . 2 ~ )  is derived from conservation of solute, assuming 
that the liquid composition is approximately uniform over microscopic distances 
corresponding to the dendrite spacing, i.e. that a PCclet number based on mass 
diffusivity and microscopic lengthscale is less than unity. The non-dimensional form of 
the liquidus relation (1.1) (c  = 8) has been used to replace solute concentration by non- 
dimensional temperature. The assumption that dendrites are composed of pure solute 
is also used. The last equation, (2.2d), expresses the conservation of heat, in which the 
effective thermal conductivity of the mush is taken to be independent of porosity. In 
using this equation, it is assumed that a thermal PCclet number based on the 
microscopic lengthscale is less than unity, so that the microscopic transport is 
conductive in nature. 

The factor K($) in (2.2a) accounts for the variation of permeability with solid 
fraction : 

n($) is the permeability as a function of solid fraction. We will follow Worster (1992) 
in choosing a form for U($) that tends to a finite value as $ tends to zero, so that the 
reference value n(0)  is well defined. The particular form of K($) will be specified later. 

Equations (2.2) have been made dimensionless using the following scales (* denotes 
dimensional quantities) : 

K($) = mJ)/n($>. 

(2.3a) 

u = u*/v, (2.3 b)  

P = P*/(KtL/~(O)), 
(x’, y’, z’) = (x*, y*, z*)/H. 

(2.3 c) 

(2.3 d )  



84 G. Amberg and G .  M .  Homsy 

Here, TL(co) is the liquidus temperature at the original composition co, TE is the 
eutectic temperature at which the mush becomes completely solid (see figure 1). K and 
p are the heat diffusivity (defined as the effective thermal conductivity of the mush 
divided by the volumetric heat capacity of the fluid) and the dynamic viscosity 
respectively, and H = K /  V is a characteristic length. 

Five non-dimensional numbers appear : 

K 
Le = -, 

D 

dV 
S = d / H = - - .  

K 

( 2 . 4 ~ )  

(2.4b) 

( 2 . 4 ~ )  

(2.4 d )  

(2.4e) 

The first of these is the mush Rayleigh number, as commonly used in studies of chimney 
formation, defined using the effective expansion coefficient, (Plr-a). C is a 
concentration ratio used by Worster (1992), which expresses important features of the 
phase diagram. Note that C will become large if the initial composition co is close to 
the eutectic composition cE. St is a Stefan number expressing the importance of latent 
heat us. specific heat release. Le is the Lewis number, which will always be large, 
typically Le > 100 (at least). The last parameter 6, a growth Peclet number, does not 
appear in the equations themselves, but will appear in the boundary conditions. It 
denotes the ratio between the actual height of the domain d and the lengthscale 
H = K / V  which has been used in the non-dimensionalization. The usual Darcy- 
Rayleigh number commonly used in the study of convection in porous media is 
Ra, = Ra8. Below, we will assume 8 to be small, C to be large, z 1/8, and solutions 
will be derived as asymptotic expansions in 8. 

The eutectic front at the bottom boundary is assumed to be translating upwards at 
a speed V. The upper boundary is thought to be the surface of a porous block through 
which mixture with composition co is fed. The temperature of the porous block is 
controlled so that the liquid issuing at its lower surface is at the liquidus temperature 
TL(co) (see figure 2b). 

The boundary conditions expressing these conditions are, in the x’, y’, z’ frame that 
translates with the eutectic front : 

at z’=O: w = O ,  8=-1,  (2.5 a) 

at z’=S:  w = O ,  B = O ,  $ = O .  (2.5b) 

The parameter 8 defined in (2.4e) appears here as the non-dimensional height of the 
mush. w is the z-component of the velocity u. 

Thus our model describes buoyancy-driven convection in a porous medium with 
constant through-flow at the boundaries. There is heat release but no volume change 



Nonlinear analysis of buoyant convection 85  

on freezing and local thermodynamic equilibrium is assumed so that the composition 
and temperature are linked through the phase diagram. The permeability of the mush 
is dependent on the local porosity, which in turn depends upon the local composition 
and temperature, leading to an important feedback between changes in thermodynamic 
state, porosity, and flow resistance. We ignore complications associated with a free 
surface, while correctly capturing the important instability mechanism related to the 
flow in the interior of the mush. As we commented in the introduction, Worster (1992) 
identified two distinctly different linearly unstable modes, one associated with a thin 
layer of unstably stratified liquid above the mush-liquid interface, the other with the 
unstable stratification within the mush. With the present model, coupling between flow 
and remelting is described correctly for the nonlinear interior mode, which is the one 
thought to evolve into chimneys. 

Our model also involves a choice of boundary conditions. An alternative boundary 
condition is p = 0 at z’ = 6, as studied in a different context by Wooding (1960). This 
would allow in- and outflow at the top boundary and may give closer quantitative 
agreement with results for a mush growing in a large bath. But this is expected to lead 
to quantitative rather than mechanistic differences between models, and may be the 
topic of further investigations. 

The complete system (2.2) is quite complicated, even without a free upper boundary. 
Here we construct a weakly nonlinear solution, as we wish to derive analytical rather 
than numerical solutions, to be able to see parameter dependencies and identify 
mechanisms explicitly. For this to be possible, simplifications must be made. By 
studying a limit where the binary system is close to the eutectic composition (C & l), 
and the mush height is much less than the diffusive lengthscale (6 < l), a suitable 
approximate system can be derived. When 6 4 1, the base state temperature will be 
approximately linear, which means that the lowest-order approximate form of (2.2 d )  
will have constant coefficients. Similarly, for C 5> 1, the base state solid fraction will be 
small and K($) = 1 + O($), so that (2.2a) will have constant coefficients to lowest 
order. 

An approximation similar to this has been used by Fowler (1985) to study possible 
linear stability mechanisms leading to convective flow and freckles. His scaling is 
somewhat different though, as it leads to a lowest-order heat equation (2.2~)  where the 
coupling between temperature and velocity has been lost. Instead he includes the free 
surface of the mush and uses an approximate boundary condition at the interface, 
which provides the coupling between temperature and velocity. 

The particular asymptotic limit that we are looking at here is defined by letting 
S - t O ,  while C, = SC = O(1) and St = O(1). In addition, we treat the case Le = co, 
corresponding to neglecting mass diffusion. Worster (1992) has shown that the effect 
of this approximation is to suppress the ‘boundary layer mode’, i.e. the onset of 
convection in a thin layer of liquid just above the mush-liquid interface. The onset of 
the convective mode internal to the mush is not affected to any great extent by these 
approximations. 

The amplitude of convection, E ,  is the other small parameter in the problem and will 
be assumed to be O(S), i.e. E / S  = A = O(1). This assumption is motivated by the 
expectation that the base state solid fraction will be O(6), while the finite-amplitude 
disturbance will be O(e). Thus, the assumption E - 6 includes the interesting situation 
when the base state solid fraction is altered significantly by the nonlinear contribution. 
E could not be significantly larger than 6, since the finite amplitude contribution would 
then most probably cause # to become negative, in which case the equations (2.2) are 
not valid. Conversely, E < 6 would rule out the interesting effects. Taking 6 - 6 and 
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analysing the dominant balances in the equations for the limit above shows that the 
problem should be rescaled as follows : 

e = eB(z) + &x, y ,  z), (2.6a) 

(2.6 b)  8 "  u = R - U(X, y ,  z), 
6 

P = RPB(z)  + y ,  z) ,  ( 2 . 6 ~ )  

(2 .6d)  

(XI, Y', 2') = Y ,  4, (2.6e) 

$ = 6$B(Z) + 8d(x, Y ,  z>, 

R2 = 6Ra = Ra,. (2.6.f 1 
The subscript B denotes the base-state solution, and the ^-variables are the two- or 

three-dimensional disturbances. The lengthscale is now, as expressed in (2.6 e), the 
height of the gap instead of the diffusive length. A consequence of this is that the 
relevant Rayleigh number should be redefined using the new lengthscale. In order to 
express the equations in self-adjoint form, R, the square root of Ra,, has been 
introduced in both equation (2.6f) ,  and the rescaled velocity and pressure. 

By introducing these expressions in equations (2.2), and setting 1/Le = E = 0, 
equations for the base state, BB(z), $B(z),  pB(z)  result, where prime denotes 
differentiation with respect to z : 

0 = -pj, + ROB, (2.7a) 

- cs 4; - ej, + q$B eB)' = 0, 

-seB-e;-s2st$; = 0. 

at z = O :  B B = - l ,  

The boundary conditions on the base state are: 

(2.7b) 

(2.7 c) 

(2.8a) 

at z = 1 :  8, = 0, (bB = O .  (2.8 b) 

The steady base state in this limit can be easily found from (2.7). Since the finite- 
amplitude solution will be obtained as a series expansion in 6, it is convenient to express 
the base state in its expansion as well: 

eB(z) = 'Bl( ' )  + 6eB2(z) + s2eB3(z) + 0(a3), 

$B(') = $B1(') + 6$B2(2) f 62$B3(z) + 0(a3). 
The result is: 

eB(z) = -(I - 2 )  + Siz(1 - z )  + 6 

+0(63). (2.9b) 

Note that both 0,  and $= are linear in z to lowest order. A finite growth PCclet number 
leads to a convective-diffusive balance and a compaction of the isodensity surfaces 
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near the bottom boundary, or equivalently, to a density profile that is no longer linear. 
Also, according to (2.6d), the base state solid fraction q5 is U(6/C,) 4 1 to lowest order, 
as expected. The parameter C, gives the magnitude of the porosity variation due to 
variations in temperature (and therefore concentration) and will play a central role in 
determining the nature of the bifurcation. 

The equations for the disturbances are obtained by introducing (2.6) with e $. 0 in 
(2.2) and making use of (2.7): 

(2.10a) 

(2.10b) 

a6 a6 a 
aZ a Z  aZ - C, - + ROg & - 6-+ - [SO, 4 + 62q5B 6 + eSd6] + ER V . (I&) = 0, (2.10 C) 

a6 a4 
a Z  az 

V26  - ReB $ = - 6- + eR V . (&) + 8 St  - . (2.10d) 

Since q5 = O(8) is expected to be small, according to (2.6d), we expand the coefficient 
K(q5) which contains the information on how the permeability varies with solid fraction 
as a series in q5: 

(2.11) 

Kl and K, are constants whose numerical values will be specified later. 

K($) = 1 + Kl q5 + K,  $4, + O(q53). 

3. Solution 
The equations for the disturbances (2.10) are solved using standard methods for 

bifurcation problems (Iooss & Joseph 1980; Palm, Weber & Kvernvold 1972; Busse 
1967). This has been carried out using the symbolic computation system Maple V 
(Char et al. 1991). Since the solution procedure follows standard lines and the 
expressions become increasingly complicated at higher order, it is only outlined here. 

The dependent disturbance variables and the controlling parameter R are all 
assumed to have regular expansions in the amplitude E .  

&, Y ,  4 = Ol(X, y ,  4 + eO&, Y ,  4 + e20,(x, y ,  4 + O(e3), (3.1 a)  

q x ,  Y ,  4 = u,(x, y ,  4 + eu&, Y,  4 + E2U3(X, y ,  z> + 0(e3), (3.1 b)  

4(x, Y ,  4 = q51(x, Y ,  4 + Eq52(X, Y,  4 + e2q53(x, Y ,  4 + O(C3), (3.1 c) 

R = R, + 6 ~ 1  + E ~ R ,  + 0(€3) ,  (3.1 d )  

Equations (2.10) contain two different small parameters, E and 6. As explained above, 
it is reasonable to assume that 6 = € / A ,  where A = O(1). The equations (2.10) then 
contain the small parameter e, and the U(1) quantities A ,  St, C,, and from (2.1 l ) ,  Kl 
and K,. Introducing the expansions and collecting equal powers of E, equations of the 
following form are obtained (after eliminating u, v and pressure, leaving Ok,  q5k and the 
z-component wk of uk = (uk, uk, wk)):  

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  - C , A +  a$ R, wk = H,, 
a Z  
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0, = W ,  = 0 at z = 0 , l ;  $, = 0 at z = 1.  

Here k = 1,2,3 . . . , and Vi denotes the two-dimensional Laplacian (a2/ax2 + a2/i3y2). 
The right-hand sides F,, G,, H ,  are nonlinear functions of the lower-order solutions 
and the parameters, i.e. they depend on w,, B,, $, with n < k ,  as well as A, St, C,, K,,  
K,, and the lower-order coefficients R,, n < k .  The lowest-order problem corresponds 
to the linear stability problem for which the right-hand sides vanish, i.e. 4 = G, = 
H, = 0. Equations ( 3 . 2 ~ )  and (3.2b) constitute a self-adjoint eigenvalue problem for 
the eigenvalue R, with eigenfunctions w,, 0,. The solid fraction $, is then obtained 
from equation ( 3 . 2 ~ ) .  

Following standard bifurcation analysis, the next order coefficient in the expansion 
of R, R,, is obtained from a solvability condition. This is obtained by projecting the 
right-hand sides of the second-order equation onto the first order eigenmode. This 
results in a scalar equation for R,. For this particular value of R,, the non- 
homogeneous second-order equations, (3.2) with k = 2, may be solved for w,, 0,, $,, 
and the process may be continued through higher orders. Here we have not carried this 
further than obtaining R,. 

We first consider two-dimensional solutions corresponding to the initial onset of 
convection in the form of rolls. Such a solution is relevant to experiments such as those 
of Chen & Chen (1991) that use ‘ Hele-Shaw ’ geometries of crystallization between 
closely placed plates. The effect of nearby sidewalls is to suppress any variation in the 
third dimension. Assuming that the lowest-order solution is two-dimensional, 
independent of y ,  and with a sinusoidal variation with x, the following expressions are 
obtained : 

w, = R sin (nz) cos (EX), ( 3 . 3 ~ )  

(3.3b) 

$ =--[ cos (nz) + 13 cos (RX), (3 .34  

d1 = - sin (RZ) cos (xx), 

27t 

c s  

R, = 2R. (3 .3d)  

These solutions are identical to those for two-dimensional convective rolls in a 
passive porous medium, Palm et al. (1972). The numerical value of R, is obtained in 
the usual way by minimizing R, with respect to the wavenumber in the x-direction. As 
is well-known, the minimum occurs for wavenumber k = R. 

Application of the solvability condition for the second-order equations as outlined 
above yields an expression for R, : 

R,, R(K, - 2St) R =-= 
‘ A  2AC, * 

(3.4) 

Using this value for R,, the second-order equations can be solved for w,, 0,, &. 
Owing to the nonlinearity they will now contain terms proportional to sin ( ~ R x )  and 
cos ( ~ R x ) ,  i.e. with a wavenumber in the x-direction which is twice that of the first-order 
solutions. The full expressions are rather complicated and are not reproduced here. 
Applying the solvability condition to the third-order equations yields the next term in 
the expansion of R :  

( 3 . 5 ~ )  
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U 

b 

d 
e 

g 
h 
k 
1 
m 

C 

f 

0.728 887665 2 
2.844035 870 
0.232243917 5 
0.785 398 163 1 
0.1 1 1  005 3260 
2.356 194490 
0.3568249580 

15.503 13834 
82.68340448 
85.26726084 

7.751569171 
TABLE 1 .  The numerical constants in the expression for R, 

where 

(3.5b) 
1 

RZR = -[ - c e  + a(K, - Kl)-gCs Kl -dSt Kl + b St+ f St2 + e C,"], c,z 
1 

R,, = =( - h Cs Kl - ke + IK, +me,"). (3 .54  
L S  

Here a-h, k-m are positive pure numbers given in table 1. Replacing A by its 
definition E / & ,  the complete expression for R to this order is : 

n(Kl - 2St) 
R = 2n+6 2CS + 6'RZR + e2R2, + O(e3). 

Here R and 6 are known parameters. The O(6) and 0(a2)  terms represent small shifts 
in the critical Rayleigh number owing to the coupling between flow and temperature 
through the dependency of permeability on solid fraction, and the release of latent 
heat. The O ( 2 )  term represents the change in R required to obtain a given finite 
amplitude e. This does not depend on St, i.e. the release of latent heat, but only on Kl 
and K,, the form of the permeability function, and the concentration ratio C,. Given 
R and 6, (3.6) determines the amplitude E of the disturbance. Since there is no term 
linear in E ,  the amplitude of convection will be proportional to 

R- Rlin 
€ = *(T) , (3.7) 

where Rlin denotes the three first terms in the expansion of R. The sign of R,, now 
determines whether the steady finite-amplitude solution exists for values of R above or 
below Rlin. It will be seen in the next section that for typical cases R,, is negative, and 
the solution exists for R < Rlin, i.e. bifurcation from the stagnant state is subcritical. 

These results can be checked in two ways. First, by putting 6 = 0, Kl = K2 = 0, 
equations (2.7) and (2.10) reduce to those studied by Palm et al. (1972). The expression 
(3.6) becomes R = 2n+e2n3/4, which agrees with the results of Palm et al. Secondly, 
Homsy & Sherwood (1976) calculated the onset of instability for a porous medium 
with through flow. The same problem is obtained here if E = 0, Kl = K2 = St = 0. 
Equation (3.6) then becomes R = 27c + 0.1 1 1  005 3260~3~. This is in good agreement with 
the results of Homsy & Sherwood, even though a very detailed comparison is not 
possible since their results were only presented graphically. 

4 F L M  2 5 2  
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The solutions obtained above assume that the finite-amplitude solutions are two- 
dimensional rolls. The more general case of three-dimensional convection is now 
considered, as it is relevant to experiments in containers with O( 1 )  aspect ratios in the 
plane perpendicular to the growth direction. It is well known that rolls will still be 
preferred if the equations are self-adjoint. However for slightly non-self-adjoint 
systems, such as non-Boussinesq fluids, hexagonal cells become possible (Busse 1967). 
Since our problem is self-adjoint only in the limit of 6 = 0, three-dimensional 
hexagonal cell solutions are possible at finite-growth Ptclet number. The first-order 
eigenfunctions corresponding to hexagons are obtained as superpositions of the two- 
dimensional eigenmodes given above, each term rotated 120" in the (x, y)-plane. The 
result is as follows: 

(3.8a) 

(3.8b) 

w, = x sin (xz) ~ ( x ,  y), 

8, = -sin (m) ~ ( x ,  y), 

(3.8 c)  

where 
T(X, y) = cos (XY) + cos [ ; K ( X ~ ;  +y)] + cos [ $ ( ~ 3 f - y ) ] .  

The solution then proceeds as in the two-dimensional case, but the solvability 
condition for the second-order equations now gives a different expression for R, : 

(3.9) 
1 

R,  = 2 R,, + R,,, 

where 

R,, = -(?+in2)-. Kl 
CS 

The complete expression for R is then: 

R = ~K+SR,,+ER,, = 2x+6 x(K1 - 2St) - (?+$TC')-+ Kl O(e2). (3.10) 
2cs CS 

The first two terms determine the critical value Rlin of R for linear stability, which 
through O(S) is identical to the shift in critical Rayleigh number for rolls. The last term 
is now linear in e, so for hexagons the amplitude varies linearly with R :  

(3.1 1 )  

where R,, is the second of the two terms in R,. R,, is negative, so E is positive for 
R < Rlin, and negative for R > Rlin. By examining the solution for w,, we see that 
positive e(R < Rlin) correspond to upflow at the centre of a hexagonal cell, while 
negative e(R > Rlin) corresponds to upflow around the rim of the hexagon. 

4. Discussion 
The solutions in (3 .3) ,  (3.6), ( 3 . Q  (3.10) (and also the second-order corrections that 

have not been reproduced) are known as functions of the parameters S, E, C,, St,  K, 
and K2. e is calculated from Ra according to (2 .6f )  and (3.7) or ( 3 . 1 1 ) .  6, C, and St are 
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determined by the thermal boundary conditions and the properties of the binary 
mixture. Kl and K2 characterize the dependence of permeability on solid fraction, 
according to (2.1 1). For the permeability model used by Worster (1992), 

K(q5) = l l ( O ) / l l ( $ )  = 1 /( 1 - $)3 = 1 + 3q5 + 6q5, + 0($3), (4.1) 
the values are K, = 3, K, = 6. These numbers will be used when discussing the general 
properties of the solution. Other micromechanical models for the resistance function 
K(q5), e.g. those corresponding to flow past periodic arrays of particles or along axes 
of cylinders as discussed in the appendix of Felicelli et al. (199 1) give similar numerical 
values for K,, K,. 

4.1. Two-dimensional conuection 
We first consider two-dimensional convection, such as occurs in Hele-Shaw geometries. 
Setting E = 0 in (3.6) recovers results from linear theory. This gives the same qualitative 
trends that were found by Homsy & Sherwood (1976) and Worster (1992): Ra = R2/6  
increases with decreasing 6, decreases with increasing C( = Cs/6), and slowly decreases 
with St .  A direct quantitative comparison with Worster is not possible, however, since 
the boundary conditions are different here, and also since Worster presented results for 
varying one of the three parameters 8, M 1/6, C and St,  setting the remaining two to 
unity, while (3.6) is valid only for both 0 ,  and C greater than one. 

The main result in (3.6) is the finite-amplitude term e2R2,. In particular the sign of 
R,, is important, as it determines whether the onset of convection is subcritical or 
supercritical. As seen from (3.5c), R,, consists of four terms. The last term is positive 
and constant. The first two are negative, proportional to K J C ,  and ( K 1 / Q 2 ,  
respectively. The third has the same sign as K,. If the variation of permeability with 
solid fraction is negligible, K,  and K2 are zero. This makes R,, = m = 3’ > 0 and the 
bifurcation is supercritical, as is well known to be the case for convection in a passive 
porous medium (Palm et al. 1972). K, is positive if the permeability increases with 
decreasing solid fraction, as expected. Both the contributions involving Kl are then 
negative, thus making the bifurcation subcritical for large enough values of Kl .  The 
term proportional to K, is associated with curvature in the K($) relation, and is usually 
positive, decreasing the tendency towards subcritical bifurcation. For a positive value 
of K,, the permeability increases less rapidly with decreasing solid fraction at values of 
q5 below the base state value, than would be calculated for a linear K(q5) relation. Thus 
for K, > 0, the third term corrects for an overestimated permeability increase in the 
critical upflow regions with lowered values of $. 

Neglecting the curvature in the K(q5) relation allows further insight into the 
controlling mechanism for subcritical bifurcation. In this case, R,, depends only on the 
combined parameter, KJC,.  It is easy to see why this is the case, since it is a 
combination of the dependence of permeability on porosity and the magnitude of 
porosity changes with temperature that matters, not these effects taken separately. The 
value of KJC,  for which R,s = 0, giving the transition from supercritical to subcritical 
rolls is easily calculated to be w 0.226. If Kl /Cs  is greater than this, R,, is negative and 
the bifurcation is subcritical. The mechanism is as anticipated : a fluctuation leading to 
a local upwelling of fluid results in a packet of fluid which is colder but more lean in 
the solute than its surroundings. As a result of the relatively higher thermal diffusivity, 
this packet equilibrates in temperature much faster than in composition. The fluid then 
appears to be superheated and accommodates to the constraint of local equilibrium by 
dissolving some solid. Thus we anticipate the formation of chimneys in upflow and a 
slow downward percolation of fluid through the remainder of the domain. Some of 
these features may be further understood through an examination of the solutions. 

4-2 
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FIGURE 3. The finite-amplitude solution for a particular case with 6 = 0.3, C, = 1, St = 1, E = 0.015. 
(a) The solid fraction 4 as a function of x at z = t. The base state value of $ is 0.141. (b)  The vertical 
velocity w as a function of x at z = 6. (c) The temperature 6' as a function of x at z = t. The 
temperature is -0.4513 in the base state. 

The solutions were evaluated for a representative case with S = 0.3, C, = 1, St = 1 
and e = 0.015. (Although this solution is subcritical and is probably unstable - see 
discussion below -its structure is of interest here.) This value of e corresponds to a 
value of R which is only 0.061 less than the critical value 6.93 for linear stability (Ra, = 
SRa is 0.767 less than critical) and was chosen to make the minimum value of the 
porosity close to zero corresponding to an open channel. In figure 3, r$, w, 6 have been 
drawn as functions of x in the interval -2 < x < 2, at the centre of the mush, z = f. 
The solutions extend periodically to co. For these parameter values, the base state 
temperature is 6 = -0.4513 at z = f, and the base state solid fraction is q5 = 0.141. The 
expected localization of the regions with low solid fraction is indeed visible in figure 
3(a), which shows rather narrow regions of low values of q5 at x = 0, _+2. Note that 
it is consistent with the assumptions in the perturbation expansion for the perturbation 
in $ to be the same order of magnitude as the base state value of $, see equation (2.6d). 
Comparing figures 3 (a) and 3 (b), it is seen that the region of low solid fraction does 
indeed correspond to a region of rising liquid, which is similarly localized. The 
maximum value for w is greater than one, which implies that the maximum 
dimensional liquid velocity is larger than V,  the translating speed of the system. Figure 
3(c) shows that the disturbance of the temperature field is quite weak, with a slightly 
lower temperature in the region where cold liquid rises. 



Nonlinear analysis of buoyant convection 93 

I 1 ‘2 X 

FIGURE 4. The solid fraction $ as a function of both x and z for the parameter values in figure 3. 
The warm boundary is at z = 1, the cold boundary at z = 0. 

Figure 4 shows a three-dimensional plot of the solid fraction as a function of both 
x and z for the same case. In the downflow regions around x = _+ 1, the solid fraction 
is seen to increase more or less linearly away from the upper boundary (z = 1). In the 
upflow regions near x = 0, 4s is close to zero over the entire depth. The general shape 
of the low solid fraction region in figure 4 resembles the pictures of fully developed 
chimneys obtained by Chen & Chen (1991) by computer tomography. They showed 
chimneys that extended all the way to the bottom plate, with little or no decrease in 
diameter. Their pictures also seem to suggest that the solid fraction is increased close 
to the chimney, something that has been predicted theoretically by Worster (1991). 

In this example the value of E was chosen to be 0.015, which makes the minimum 
value of cj almost zero, i.e. t is close to the maximum allowable amplitude for these 
parameter values. This amplitude E,,, can be estimated by solving 4s = 0 for E = emax, 
using (2.6b), (3.3 c), (3.1 c), (2.9b), discarding all higher-order terms for simplicity and 
noting that the minimum of cj is attained near z = 0. The result is: 

6 
47c 

Em,, E -+ O(62). 

It is seen that the variation of R with E is quite small, decreasing by 0.061 from R = 
6.93, when 6 increased from 0 to the maximum value 6/47c. This means that even 
though subcritical bifurcation to rolls may occur in principle, the interval in R where 
this is possible is so small that it is unlikely to be seen in an experiment. When E > emax, 
the model predicts negative cj, which will be interpreted as the appearance of fully 
developed chimneys, i.e. regions where the mush has melted away completely. Of 
course at this point our model breaks down, as it is based on Darcy’s law. More 
sophisticated models, based either on Darcy-Brinkman type equations or a dis- 
continuous model such as that of Worster (1991) must be used. We speculate below 
that the solution presented here joins a solution branch corresponding to fully 
developed chimneys at an amplitude given approximately by (4.2). 
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6 < 0, downflow 
at cell centres 

FIGURE 5 .  Qualitative bifurcation diagrams in the absence of fully developed chimneys. - - -, unstable 
branches; --, stable branches, under the assumption of a simple eigenvalue. (a) Rolls with 
hypothetical quintic terms included. (b)  Hexagons with hypothetical quadratic terms included. 

4.2. Three-dimensional hexagonal convection 
The analogy between the dependency of material parameters on temperature in non- 
Boussinesq Binard convection and the coupling between permeability and temperature 
here, led us to investigate solutions in the form of hexagonal cells. The solutions to first 
order are given in (3.8), (3.9) and (3.10). As is also the case for non-Boussinesq Benard 
convection, the bifurcation is now transcritical, i.e. the first non-zero term in the 
expansion of R is linear in 6, instead of quadratic which was the case for rolls. 

The coefficient R,, never changes sign, so the bifurcation to hexagons is always 
subcritical. Since R,, is proportional to the ratio KJC,,  the tendency to subcriticality 
is reduced by increasing C, and enhanced by increasing K,, just as for rolls, and for 
identical reasons. Thus we see that although the nature of the bifurcation is 
qualitatively different, the same mechanism of the coupling between upflow, melting 
and flow resistance obtains in three dimensions. In fact, it is stronger, since the 
convection is not constrained to two dimensions. 

Just as for rolls, the finite-amplitude solutions predict a negative solid fraction if 8 
is taken too large. Using equations (3.8c), (2.6d), ( 3 . 1 ~ )  and (2.9b) to estimate the 
maximum value of 8 that gives a positive solid fraction, we find: 

(4.3) 
s 

12n 
€max " -+ o(62), 

which is smaller than that for rolls. 
Using the same parameter values 6 = 0.3, C, = 1 ,  St = 1 and K,  = 3, K ,  = 6 ,  as in 

the example for rolls, emax = S/127c = 0.00796. Evaluating the expression for R, 
equation (3.10), it is seen that R is 0.714 below the critical value 6.75 for linear stability 
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FIGURE 6 .  Bifurcation diagrams showing qualitatively the appearance of fully developed chimneys. 
(a) ---, results for subcritical rolls and transcritical hexagons (equations (3.6) and (3.10)). The thicker 
grey lines are the speculated fully developed chimney branches. (b) The same as in (a), with qualitative 
indication of the effects of incorporating higher-order terms. - - -, probably unstable, -, stable to 
a general disturbance. 

(9.6 below the critical value 45.6 for Ra,). Thus the interval in R where a bifurcation 
to hexagons is possible is significant, and may be detectable in an experiment. 

4.3. Speculations on the bifurcation structure 
Our analysis establishes the local bifurcation structure, but is limited for two reasons. 
First, fundamental properties of sub- and transcritical bifurcations, Iooss & Joseph 
(1980), show that those branches for which 6 is a decreasing function of R are probably 
unstable. Since the mechanism leading to unstable branches is firmly established, they 
presumably become stable once the highly destabilizing mechanism of remelting due to 
upflow is inhibited. There are two plausible mechanisms that lead to stable solutions : 
' snap through ' transitions to either high-amplitude stable states or to fully-developed 
chimneys. 

This first possibility is sketched in figure 6 (b), where the possible effect of including 
higher-order terms in the solution is given qualitatively. Figure 5(a) shows the effect of 
computing the quintic terms in the expansion in 8 for rolls. There is no significant effect 
for KJC,  c 0.226, as rolls are supercritical and stable. However, for K J C ,  > 0.226, 
higher-order terms may stabilize these solutions if the curvature is such that the knee 
of the curve is below emax z S/47c. 

Similarly, figure 5(6) shows the possible structure for hexagons. We show the 
possibility of two branches, representing upflow and downflow in the centres of the 
cells, respectively, with upflow stable above the turning point, and downflow stable. 
General considerations (see e.g. Joseph 1971) establish this as a plausible structure. By 
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computing the quadratic terms in the expansion of R for hexagons, the solution 
branches would become parabolae and, again, if the second-order terms are large 
enough, the branch could turn at an amplitude E below emax z 6/127c. 

For either rolls or hexagons the solutions would be stable above the turning point 
and possible to realize in an experiment. These solutions would thus exhibit finite 
variations in solid fraction, with upflow at locations with low volume fraction, but with 
a non-zero solid fraction everywhere. The computation of these higher-order terms 
requires extensive algebra, and remains a topic for further work. In addition to the 
question of existence of stable solutions due to higher-order terms in the expansion in 
E ,  there is also the question of the relative stability of convective patterns. In analogy 
with the related problem of non-Boussinesq Rayleigh-BCnard convection, it is 
necessary to establish whether rolls are stable with respect to hexagons, and vice-versa. 
These calculations also represent a topic for further study. 

Our second scenario for what happens to the unstable branches is that nothing 
moderates the melting and reduced flow resistance in upflow regions until the solid 
disappears. This is what happens in a fully developed chimney. Figure 6(a) illustrates 
this in a qualitative way. Although our model breaks down at that point, we take the 
bold step of trusting our solutions up to = 0, and take that as the point of transition 
to chimneys, as explained above. If chimneys are stable, the solution branch should 
turn forward as shown. 

If the speculation is accepted, one specific result that can be obtained here is the 
extent of the R interval, Rlin - R,, where subcritical bifurcations to chimneys are 
possible. For the hexagon solutions this can be estimated from (4.3) and (3.10) to be 

The corresponding expression for rolls gives Rlin - R, = O(S2), i.e. smaller by a 
factor of 6. Consequently, as indicated in figure 6(a), the hexagon branch reaches 
significantly lower values of R than the roll branch. Our calculations then suggest that 
a stable fully developed chimney exists at much lower values of R for hexagons than 
for rolls, showing a preference to form hexagons, at least in the range R, < R < Rlin. 

4.4. Relationship to experiments 
The results above indicate that the transition to chimney convection is nearly always 
subcritical, but in two-dimensional Hele-Shaw geometries, the subcritical interval in 
Rayleigh number is so small that it would be difficult to observe. There are several 
indirect indications that subcritical transitions do occur, the most compelling of which 
was reported by Hellawell(1987) in which the mush/melt boundary was disturbed with 
a pipette. Chimneys failed to form when fine holes were drilled in the mush with the 
pipette. On the other hand, when fluid was actually withdrawn through the pipette, 
chimneys invariably formed. These observations are consistent with a subcritical 
bifurcation, triggered by finite-amplitude upward velocity disturbances. Clearly, in the 
cases where chimneys were suppressed, the level of disturbances must still have been 
large enough for linearly unstable modes to be triggered. 

Sample & Hellawell (1984), among others, have argued that chimney formation is 
inherently dependent on processes at the mush-liquid interface. Our analysis shows 
that this need not be the case, since we have clearly identified a mechanism based on 
internal convection alone. Tait & Jaupart (1992) have shown that the horizontal 
lengthscale of the chimneys is much larger than the lengthscale of the thermo-solutal 
plumes that typically appear owing to the boundary-layer instability. In the present 
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context it is plausible to view the appearance of chimneys as a subcritical bifurcation 
which may well be triggered by finite-amplitude disturbances from the plumes above 
the mush. Once the bifurcation has been triggered though, the bifurcated solution does 
not depend on details of the initial disturbance, and the properties of chimneys may 
still be determined primarily by processes taking place inside the mush instead of at the 
mush-liquid interface. 

The possibility of stable downflow at hexagonal cell centres, as suggested by the 
supercritical E < 0 branch in figure 5(6), seems to have strong support in the recent 
experiments by Tait et al. (1992). These were designed with a much lower cooling rate 
than previous experiments, which probably gave instabilities more time to grow before 
the background temperature and the mush thickness had changed appreciably. Under 
one set of conditions, they found that the mush was completely flat and smooth until 
it reached a thickness of about 1.5 cm. Soon after this a cellular pattern appeared, 
which consisted of narrow straight channels meeting at junctions. This pattern was 
characterized as hexagonal by counting the average number of branches meeting at 
junctions, and measuring average cell area and relating it to side lengths. The 
lengthscale of the hexagonal cells appears to scale with the depth of the mush. 
Chimneys were found to evolve from a focusing of the convection at the channel 
junctions and a freezing over of the channels themselves. 

These remarkable findings establish fairly unequivocally that the convection in 
buoyantly unstable mushy zones is hexagonal, and therefore, by inference, transcritical. 
While this general fact is in agreement with the calculations given here, the experiments 
show a strong tendency for upflow along the boundaries (the branch 6 < 0 in figure 5 b), 
while our theory predicts the first unstable branch to be upflow in the centres ( E  > 0 in 
figure 5 6). The experimental tendency for upflow along boundaries appears to be 
robust, occurring in all the experiments in which hexagons are clearly observed (Tait, 
private communication). The differences between theory and experiment must for the 
moment remain unresolved but could be due to several factors, including differences 
in boundary conditions, limitations of our simplified isotropic continuum model for 
the mush, the relative stability of different branches to other patterns, the intrinsic 
time-dependent nature of the experiments, etc. At this stage, both the experimental 
study of hexagonal mush convection and nonlinear theories are just beginning, and 
many of these issues remain to be studied. 

Some of these issues can be addressed through an analysis of the stability of the 
different branches. This would probably require a higher-order hexagon solution and 
much more involved calculations, which have not been attempted here. It can be 
anticipated though that owing to the multiplicity of the eigenvalue at R = Rlin 
(allowing both rolls and hexagons), the supercritical E < 0 branch will be unstable 
(Brattkus & Davis 1988). However, if the multiplicity of the eigenvalue for some reason 
is removed, the e < 0 branch would be stable, as indicated in figure 5(b) .  Joseph (1971) 
has shown that this is the case in layers of finite horizontal extent. Since the problem 
of a fluid layer of infinite extent is always an approximate description of a layer of large 
but finite aspect ratio, the question is how large this aspect ratio must be for this effect 
to determine the pattern. Clearly, more complete analyses of these possibilities, 
together with more careful experiments in which controlled disturbances are 
introduced, are needed to resolve many of these issues and speculations. 
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